Comparison between spring network models and continuum constitutive laws: application to the large deformation of a capsule in shear flow.

نویسندگان

  • T Omori
  • T Ishikawa
  • D Barthès-Biesel
  • A-V Salsac
  • J Walter
  • Y Imai
  • T Yamaguchi
چکیده

A capsule is a liquid drop enclosed by a solid, deformable membrane. To analyze the deformation of a capsule accurately, both the fluid mechanics of the internal and external fluids and the solid mechanics of the membrane must be solved precisely. Recently, many researchers have used discrete spring network models to express the membrane mechanics of capsules and biological cells. However, it is unclear whether such modeling is sufficiently accurate to solve for capsule deformation. This study examines the correlations between the mechanical properties of the discrete spring network model and continuum constitutive laws. We first compare uniaxial and isotropic deformations of a two-dimensional (2D) sheet, both analytically and numerically. The 2D sheet is discretized with four kinds of mesh to analyze the effect of the spring network configuration. We derive the relationships between the spring constant and continuum properties, such as the Young modulus, Poisson ratio, area dilation modulus, and shear modulus. It is found that the mechanical properties of spring networks are strongly dependent on the mesh configuration. We then calculate the deformation of a capsule under inflation and in a simple shear flow in the Stokes flow regime, using various membrane models. To achieve high accuracy in the flow calculation, a boundary-element method is used. Comparing the results between the different membrane models, we find that it is hard to express the area incompressibility observed in biological membranes using a simple spring network model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Corotational Elastic Constitiutive Model and its Application to the Analysis of a Large Deformation Closed Cycle

In this paper, an elastic constitutive model based on the Eulerian corotational rate of the logarithmic strain tensor is proposed. Using this model, the large deformation of a closed cycle containing tension, shear, compression and inverse shear is analyzed. Since the deformation path includes a closed cycle and the material is considered as an isotropic elastic material, the normal and shear c...

متن کامل

A Corotational Elastic Constitiutive Model and its Application to the Analysis of a Large Deformation Closed Cycle

In this paper, an elastic constitutive model based on the Eulerian corotational rate of the logarithmic strain tensor is proposed. Using this model, the large deformation of a closed cycle containing tension, shear, compression and inverse shear is analyzed. Since the deformation path includes a closed cycle and the material is considered as an isotropic elastic material, the normal and shear c...

متن کامل

Development of a rheological model for polymeric fluids based on FENE model

Rheological models for polymer solutions and melts based on the finitely extensible non-linear elastic (FENE) dumbbell theory are reviewed in this study. The FENE-P model that is a well-known Peterlin approximation of the FENE model, indicates noticeable deviation from original FENE predictions and also experimental results, especially in the transient flow. In addition, both FENE and FENE-P mo...

متن کامل

Neural Network Prediction of Warm Deformation Flow Curves in Ferrite+ Cementite Region

Many efforts have been made to model the the hot deformation (dynamic recrystallization) flow curves of different materials. Phenomenological constitutive models, physical-based constitutive models and artificial neural network (ANN) models are the main methods used for this purpose. However, there is no report on the modeling of warm deformation (dynamic spheroidization) flow curves of any kin...

متن کامل

Modeling of the beam discontinuity with two analyses in strong and weak forms using a torsional spring model

In this paper, a discontinuity in beams whose intensity is adjusted by the spring stiffness factor is modeled using a torsional spring. Adapting two analyses in strong and weak forms for discontinuous beams, the improved governing differential equations and the modified stiffness matrix are derived respectively. In the strong form, two different solution methods have been presented to make an a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 83 4 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2011